
ON p-ADIC GALOIS REPRESENTATIONS

by

Laurent Berger

Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. The Galois group of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Ramification of local fields, I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. p-adic representations with ` 6= p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Rings of periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5. Galois cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6. Ramification of local fields, II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
7. Cyclotomic extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8. The cohomology of Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
9. Witt vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Introduction

These are the notes for my part of the course “p-adic Galois representations and global

Galois deformations”. My aim was to give a short introduction to the p-adic Hodge

theory necessary for formulating the local conditions imposed on deformations of p-adic

representations. I also included some material on the technical tools used for proving the

properties of Fontaine’s rings of periods, although I usually gave no actual proofs of the
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results. In these notes, there are a few changes from the actual course; for example I

exchanged ` and p in various places in order to follow the notation of the other courses.

1. The Galois group of Q

Let E be a finite extension of Qp, and let GQ = Gal(Q/Q). A p-adic representation

of GQ is a finite dimensional continuous E-linear representation V of GQ. We wish to

study p-adic representations of GQ, either individually or in families.

Let ` be a prime number (which may or may not be equal to p) and let λ be a place

of Q above `. The group Dλ = {g ∈ GQ such that g(λ) = λ} is the decomposition group

of λ. If λ′ is another place above `, then Dλ and Dλ′ are conjugate, and we write D` for

the resulting group, which is well-defined up to conjugation in GQ.

The choice of λ is equivalent to the choice of an embedding of Q into Q`, and this gives

rise to a map D` → GQ`
, which is easily seen to be an isomorphism. The groups GQ`

are

easier to understand than GQ, thanks to ramification theory (recalled in §2).

Given a p-adic representation V , one then studies its restriction to D` for various primes

`, and the following result says that we do not lose too much information when doing so.

Proposition 1.1. — If S is a set of prime numbers of density 1, and if V is a semisimple

representation of GQ, then V is determined by its restriction to the D` with ` ∈ S.

2. Ramification of local fields, I

Let ` be a prime number, let K be a finite extension of Q`, and let OK and mK and

kK and πK denote its ring of integers, maximal ideal, residue field and a uniformizer

respectively. Let Kunr denote the maximal unramified extension of K, and let Ktame

denote the maximal tamely ramified extension of K.

The group Gal(F`/kK) is isomorphic to Ẑ, and is topologically generated by Frm =

x 7→ xm where m = Card(kK). The inertia subgroup IK of GK is the kernel of the natural

map GK → Gal(F`/kK), and we then have IK = Gal(Q`/K
unr). Likewise, we have

Ktame = ∪`-nKunr(π
1/n
K ),

so that Gal(Ktame/Kunr) = lim←−`-n µn, where the map is given by

g 7→ {g(π
1/n
K )/π

1/n
K }n>1.

In particular, if α ∈ Gal(Ktame/Kunr), and if the image of σ ∈ Gal(Ktame/K) in

Gal(F`/kK) is Frm, then σασ−1 = αm. Finally, I
(`)
K = Gal(Q`/K

tame) is the `-Sylow

subgroup of IK , called the wild inertia subgroup.
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3. p-adic representations with ` 6= p

An easy corollary of the equation σασ−1 = αm is Grothendieck’s monodromy theorem.

Theorem 3.1. — If V is a p-adic representation of GK, with K as above, and if ` 6= p,

then there exists a finite extension L of K, such that V |IL is unipotent.

We say that a p-adic representation V of GK has good reduction if V |IK is trivial, and

we say that V is semistable if V |IK is unipotent. Grothendieck’s theorem above then says

that every p-adic representation of GK is potentially semistable (recall that ` 6= p).

There is a useful way of describing the p-adic representations of GK . Let K be as

before, so that there is a map n : GK → Ẑ, defined by g = Frn(g)m . The Weil group

WK is {g ∈ GK , such that n(g) ∈ Z}. A Weil-Deligne representation is the datum of

a representation V of WK (given by a map ρ : WK → End(V )) and of a nilpotent map

N ∈ End(V ) such that Nρ(g) = m−n(g)ρ(g)N .

Choose a compatible sequence {ζ`n}n>0 of primitive `n-th roots of 1, and let t : IK → Z`

be the map determined by g(π
1/`n

K ) = ζ
t(g)
`n π

1/`n

K . Choose also σ ∈ GK such that n(σ) = 1.

If V is a p-adic representation of GK , then by Grothendieck’s theorem, there exists a

finite extension L of K such that ρ(g) is unipotent if g ∈ IL. In this case, the map

N = log ρ(g)/t(g) ∈ End(V ) is well-defined, and independent of g ∈ IL. We attach to

V a Weil-Deligne representation (ρWD, NWD) on the same underlying space V , by the

formulas ρWD(w) = ρ(w) exp(−t(σ−n(w)w) ·N) and NWD = N .

The isomophism class of the resulting representation does not depend on the choices

made, and we can easily recover V from (ρWD, NWD).

4. Rings of periods

From here to the end of these notes, we assume that ` = p, so that K is now a finite

extension of Qp. We would like to have a classification of p-adic representations of GK

similar to the one above, but this is harder to obtain. Indeed, let χ : GK → Z×p be the

cyclotomic character, defined by g(ζpn) = ζ
χ(g)
pn . We can write χ = ω · 〈χ〉 with ω ∈ µp−1

and 〈χ〉 ∈ 1 + pZp and we can then consider ωr〈χ〉s with r ∈ Z/(p − 1)Z and s ∈ Zp.

All such characters are representations of GK but it turns out that they are “good” only

if s ∈ Z. It is hard to distinguish such characters merely by looking at their image or

kernel, and in order to classify p-adic representations, one therefore needs more than mere

ramification theory.

The main tool for doing so is Fontaine’s construction of rings of periods. A ring of

period if a Qp-algebraB, endowed with an action ofGK , and possibly some supplementary
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structures, compatible with the action of GK (for example a filtration, a Frobenius map,

a monodromy map. . . ). We require that B is a domain, that (1) Frac(B)GK = BGK and

that (2) if y ∈ B is such that Qp · y is stable under GK , then y ∈ B×. For example, all

these conditions are automatically fulfilled if B is a field.

If V is a p-adic representation of GK , we then define DB(V ) = (B ⊗Qp V )GK , which is

a BGK -vector space. There is a natural map

α : B ⊗BGK DB(V )→ B ⊗Qp V,

and condition (1) above implies that α is injective, so that DB(V ) is of dimension 6

dimQp(V ). We say that V is B-admissible if DB(V ) is of dimension dimQp(V ). By

condition (2) above, this is the case if and only if α is surjective. If V is E-linear, then

we say that it is B-admissible if the underlying Qp-linear representation is B-admissible.

In this way, we have defined the subcategory of B-admissible p-adic representations of

GK , inside the category of all p-adic representations of GK . This subcategory is stable

under subquotients, direct sums, tensor products and duals. If B has some supplementary

structures, then these descend to DB(V ), and in this way we obtain some nontrivial

invariants of B-admissible representations, which can then be used to classify them.

5. Galois cohomology

In this section, we give a few reminders about Galois cohomology groups. If V is

a p-adic representation of GK , then we write H i(K,V ) for H i(GK , V ). We also write

hi(V ) = dimQp H
i(K,V ). Let V ∗ be the dual of V , and let V ∗(1) = V ∗ ⊗ χ.

If i = 0, 1 or 2, then the cup product

∪ : H i(K,V )×H2−i(K,V ∗(1))→ H2(K,V ⊗ V ∗(1))

gives rise to a pairing H i(K,V ) × H2−i(K,V ∗(1)) → H2(K,Qp(1)). We then have the

following theorem of Tate.

Theorem 5.1. — The groups H i(K,V ) are finite dimensional Qp-vector spaces, they

are {0} if i > 3, we have H2(K,Qp(1)) = Qp, the pairing H i(K,V )×H2−i(K,V ∗(1))→
Qp is perfect, and h0(V )− h1(V ) + h2(V ) = −[K : Qp] dim(V ).

If y ∈ K×, let {yn}n>0 be a sequence such that y0 = y and ypn+1 = yn. Let δ(y) :

GK → Zp be the map determined by the equation g(yn) = ζ
δ(y)(g)
pn yn, so that δ(y)(gh) =

δ(y)(g) + χ(g)δ(y)(h). We then have δ(y) ∈ H1(K,Qp(1)), and the map y 7→ δ(y) is

the Kummer map. It extends to a map δ : Qp ⊗Zp K̂
× → H1(K,Qp(1)), which is an

isomorphism by Kummer theory. In particular, we have h1(Qp(1)) = [K : Qp] + 1, which

is compatible with theorem 5.1.
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If B is a ring of periods, then W = B ⊗Qp V is a semilinear representation of GK : it

is a free B-module, with a semilinear action of GK . If we choose a basis of such a W ,

then g 7→ Mat(g) gives a cocyle on GK with values in GLd(B), and choosing a different

basis gives a cohomologous cocycle. In this way, we get [W ] ∈ H1(GK ,GLd(B)), and

the original representation V is then B-admissible if and only if [B ⊗Qp V ] is the trivial

cohomology class. The following result, known as Hilbert’s theorem 90, is then useful.

Theorem 5.2. — If L/K is finite Galois, then H1(Gal(L/K),GLd(L)) = {0}.

As a consequence, we see for example that if Qp ⊂ B, then potentially B-admissible

representations are already B-admissible.

We can deduce from theorem 5.2 that H1(Gal(Fp/kK),GLd(Fp)) = {0}, and an argu-

ment of successive approximations then shows that

H1(GK/IK ,GLd(Q̂
unr
p )) = {0}.

This way, we see that unramified representations of GK are Q̂unr
p -admissible.

6. Ramification of local fields, II

In this section, we collect various statements about the ramification of extensions of

Qp, which are useful for proving some of the properties of Fontaine’s rings of periods.

We give in particular a few reminders about the conductor and the different of a finite

extension K/F . Let valK(·) be normalized by valK(K×) = Z. Recall that if u > −1,

then one defines the ramification filtration Gal(K/F )u = {g ∈ Gal(K/F ) such that

valK(gx − x) > u + 1 for all x ∈ OK}. Herbrand defined a function ψK/F , such that if

we define Gal(K/F )v = Gal(K/F )ψK/F (v), then Gal(K/F )v is the image of Gal(L/F )v

whenever L is an extension of K. One can then define Gv
F for v > −1.

If K/F is Galois, then we define Ku = KGal(K/F )u , and if K is not Galois then

we set Ku = Lu ∩ K, where L/F is Galois and contains K. For example, we have

Gal(Qp(ζpn)/Qp)
i = Gal(Qp(ζpn)/Qp(ζpi)), and therefore Qp(ζpn)u ⊂ Qp(ζpbuc). The

conductor of K (with respect to F ) is the inf of the real numbers u with Ku = K.

Recall also that we have the different dK/F = Ǒ−1K , where ǑK is the dual of OK with

respect to the pairing (x, y) 7→ TrK/F (xy). The different and conductors are related by

the following formula.

Proposition 6.1. — We have

valp(dK/F ) =

∫ ∞
−1

(
1− 1

[K : Ku]

)
du.



6 LAURENT BERGER

7. Cyclotomic extensions

Let F = Qp, let Fn = Qp(ζpn) for n > 1, and let F∞ = ∪n>1Fn. We know that Fn

is a totally ramified extension of F of degree pn−1(p − 1), and also that OFn = Zp[ζpn ].

If n > 1 and y ∈ F∞, then y ∈ Fn+k for some k � 0, and Rn(y) = p−kTrFn+k/Fn(y)

does not depend on k. The map Rn : F∞ → Fn is then a GF -equivariant projection. We

have Rn(1) = 1 while Rn(ζpn+k) = 0 if 1 6 j 6 pk − 1, so that Rn(OFn+k
) ⊂ OFn . This

implies that if y ∈ F∞, then valp(Rn(y)) > valp(y)− 1/(pn−1(p− 1)), and therefore that

Rn extends by uniform continuity to a projection Rn : F̂∞ → Fn. In addition, we have

Rn(y) = y if y ∈ F∞ and n� 0, so that if y ∈ F̂∞ then Rn(y)→ y as n→∞.

Let K be a finite extension of Qp, let Kn = K(ζpn) for n > 1, and let K∞ = ∪n>1Kn. If

n� 0, then Kn+1/Kn is totally ramified of degree p, and Kn/Fn is of degree d = K∞/F∞

if n > n(K). Proposition 6.1, and the fact that F u
n ⊂ Fbuc, can be used to show that the

sequence {pnvalp(dKn/Fn)}n>1 is eventually constant. In particular, if δ > 0 then there

exist n(δ) > n(K) such that if n > n(δ), then valp(dKn/Fn) 6 δ. This implies that if

n > n(δ), then there exists a basis e1, . . . , ed of OKn over OFn , such that valp(e
∗
i ) > −δ.

If y ∈ OKn+k
, then we can write y =

∑d
j=1 yje

∗
j , where yj = TrK∞/F∞(yej) belongs to

OFn+k
, and we set Rn(y) =

∑d
j=1Rn(yj)e

∗
j . The resulting map Rn : K∞ → Kn is then

a GK-equivariant projection, which satisfies valp(Rn(y)) > valp(y)− 1/(pn−1(p− 1))− δ,
and therefore Rn extends, by uniform continuity, to a projection Rn : K̂∞ → Kn, such

that Rn(y)→ y as n→∞ as above.

8. The cohomology of Cp

Let Cp be the p-adic completion of Qp, so that Cp is a complete and algebraically

closed field. If L is a subfield of Qp, then the action of GL on Qp extends by continuity

to Cp, and we have the following result of Ax-Sen-Tate.

Theorem 8.1. — If L ⊂ Qp, then CGL
p = L̂.

If L is as above, and α ∈ Qp, then we set ∆L(α) = infg∈GL
valp(g(α) − α). The main

ingredient of the proof of theorem 8.1 is the following result of Le Borgne, which improves

upon a similar result of Ax.

Lemma 8.2. — If α ∈ Qp, then there exists β ∈ L, with valp(α−β) > ∆L(α)−1/(p−1).

Let ψ : GK → Z×p be a character, which is trivial on ker(χ) = Gal(Qp/K∞) (for

example, one could take ψ = χh with h ∈ Z).

Theorem 8.3. — If ψ has infinite order, then H0(K,Cp(ψ)) = {0}.
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If ψ has finite order, then Hilbert’s theorem 90 implies that Cp(ψ) = Cp, and then

H0(K,Cp(ψ)) = K by theorem 8.1 above. We now give a sketch of the proof of theorem

8.3. If H0(K,Cp(ψ)) 6= {0}, then there exists a nonzero y ∈ Cp such that g(y) = ψ(g)y

for g ∈ GK . We apply the maps Rn from §7; since Rn(y) → y, we have Rn(y) 6= 0 for

n� 0. The formula g(Rn(y)) = ψ(g)Rn(y) now implies that ψ is trivial on Gal(Qp/Kn),

and therefore has finite order.

By proving more refined results aboutK∞, one can also prove thatH1(K,Cp(ψ)) = {0}
if ψ has infinite order. Finally, H1(K,Cp) is a 1-dimensional K-vector space, generated

by [g 7→ logp χ(g)].

9. Witt vectors

We say that a ring R is perfect if p = 0 and x 7→ xp is a bijection on R. We say that

a ring A is a perfect p-ring if p is a not a zero divisor, if A is separated and complete for

the p-adic topology, and if A/pA is perfect. If x ∈ A/pA, we denote by x̂ a lift of x to

A. Let x0 = x and let xi+1 = x
1/p
i . The sequence {x̂p

i

i }i>0 then converges to an element

[x] ∈ A, which is independent of all choices, and is called the Teichmüller lift of x. Every

element of A can be written as
∑

i>0 p
i[xi] in a unique way.

LetR = Fp[X
1/p∞

i , Y
1/p∞

i ]i>0, and let S be the p-adic completion of Zp[X
1/p∞

i , Y
1/p∞

i ]i>0,

so that S is a perfect p-ring with residue ring R. There exist elements {Si}i>0 and {Pi}i>0

of R such that ∑
i>0

piXi +
∑
i>0

piYi =
∑
i>0

pi[Si],∑
i>0

piXi ×
∑
i>0

piYi =
∑
i>0

pi[Pi].

If A is a perfect p-ring and {xi}i>0 and {yi}i>0 are two sequences of elements of R,

then we have a map π : S → A given by π(Xi) = [xi] and π(Yi) = [yi]. By applying π to

the two equations above, we see that∑
i>0

pi[xi] +
∑
i>0

pi[yi] =
∑
i>0

pi[Si(x, y)],∑
i>0

pi[xi]×
∑
i>0

pi[yi] =
∑
i>0

pi[Pi(x, y)],

so that addition and multiplication of elements of A, written as
∑

i>0 p
i[xi], are given by

universal formulas.

Theorem 9.1. — If R is a perfect ring, then there exists a unique perfect p-ring W (R)

such that W (R)/pW (R) = R.
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The discussion above shows that one can take W (R) = {
∑

i>0 p
i[xi] with xi ∈ R},

addition and multiplication being given by the universal formulas. The ring W (R) is

called the ring of Witt vectors over R.

Proposition 9.2. — If R is a perfect ring, if A is complete for the p-adic topology,

and if f : R → A/pA is a homomorphism, then f lifts to a unique homomorphism

W (f) : W (R)→ A.

In the notation of the beginning of this section, we must have W (f)([x]) =

limn→∞ f̂(xn)
pn

, and it remains to check that this does give a ring homomorphism.

For example, the map R → R given by x 7→ xp gives rise to the Frobenius map ϕ on

W (R).

Finally, if R is equipped with a valuation val(·), then we can define semivaluations

wk(·) on W (R) by wk(
∑

i>0 p
i[xi]) = mini6k val(xi). The weak topology of W (R) is the

one defined by these semivaluations.

Proposition 9.3. — If R is complete for val(·), then W (R) is complete for the weak

topology.

10. The rings Ẽ+ and B̃+

Fix some 0 < δ < 1/(p− 1), and let I = {x ∈ OCp , with valp(x) > 1/(p− 1)− δ}. We

define Ẽ+
I = {(x0, x1, . . .) where xi ∈ OCp/I, and xpi+1 = xi}, so that Ẽ+

I is a perfect ring

(addition and multiplication being termwise). We have a map from {(x(0), x(1), . . .) where

x(i) ∈ OCp , and (x(i+1))p = x(i)} to Ẽ+
I , which can be shown to be a bijection, so that Ẽ+

I

does not depend on I, and we denote it by Ẽ+. If x ∈ Ẽ+, we set valE(x) = valp(x
(0)),

and this defines a valuation on Ẽ+, for which it is complete.

If α ∈ Fp, then ([α1/pn ])n>0 ∈ Ẽ+, and this gives an injective map Fp → Ẽ+. The

choice of a sequence {ζpn}n>0 gives rise to an element ε = (1, ζp, . . .) ∈ Ẽ+, and we define

π = ε − 1, so that valE(π) = p/(p − 1). In particular, Fp[[π]] ⊂ Ẽ+. The theorem below

is not needed in the sequel, but gives an idea of the structure of Ẽ+.

Theorem 10.1. — The field Ẽ+[1/π] is the completion of the algebraic closure of

Fp((π)).

The more complicated definition of Ẽ+ which we have given has the advantage of

showing that Ẽ+ is equipped with an action of GQp . We then set Ã+ = W (Ẽ+) and

B̃+ = Ã+[1/p], and both rings are also equipped with an action of GQp , as well as

the Frobenius map ϕ. The homomorphism Ẽ+ → OCp/p extends, by theorem 9.2, to
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a homomorphism θ : Ã+ → OCp , given explicitly by θ(
∑

i>0 p
i[xi]) =

∑
i>0 p

ix
(0)
i . For

example, θ([ε]− 1) = 0.

Proposition 10.2. — The ideal ker(θ) is generated by any element y ∈ ker(θ) such that

valE(y) = 1.

This is the case with y = ([ε]−1)/([ε1/p]−1) (Fontaine’s element ω), or with y = [p̃]−p,
where p̃ ∈ Ẽ+ is such that p̃(0) = p.

11. The field BdR

Let B̃+ be the ring constructed in §10, and for h > 1, let Bh = B̃+/ ker(θ)h (in

particular, we have B1 = Cp). We let B+
dR = lim←−h>1

Bh, so that B+
dR is a complete

local ring, with maximal ideal ker(θ) and residue field Cp, and is also equipped with an

action of GQp . An element y ∈ B+
dR is invertible if and only if θ(y) 6= 0. For example,

ker(θ) = ([ε] − 1)B+
dR, since θ([ε1/p] − 1) 6= 0. We define BdR = Frac(B+

dR), so that

it is a ring of periods, equipped with the additional structure of the filtration given by

FiliBdR = ker(θ)i.

The series ([ε]−1)−([ε]−1)2/2+([ε]−1)3/3−· · · converges, to an element t ∈ B+
dR which

also generates ker(θ), so that BdR = B+
dR[1/t]. Since g(ε) = εχ(g), we have g(t) = χ(g)t.

Remark 11.1. — The ring B+
dR is isomorphic to Cp[[t]], but only as abstract rings, and

there is no such isomorphism which is compatible with the action of GQp (as we’ll see in

§16).

The ring B+
dR is complete for the ker(θ)-adic topology, but it is also complete for a

finer topology. Each ring Bh is a Banach space (the unit ball being the image of Ã+),

and this gives B+
dR the structure of a Fréchet space. Note that there is no such thing as

a “p-adic topology” on B+
dR.

If P (X) ∈ Qp[X] is a polynomial with simple roots, then it splits completely in Cp

and hence, by Hensel’s lemma, it also splits completely in B+
dR, since B+

dR/tB
+
dR = Cp.

This way, we see that Qp ⊂ B+
dR. A theorem of Colmez shows that actually, Qp is dense

in B+
dR for its Fréchet topology.

Proposition 11.2. — We have BGK
dR = K.

To prove this, we write the exact sequence 0→ th+1B+
dR → thB+

dR → Cp(h)→ 0, and

use the computation of H0(K,Cp(h)) carried out in §8.
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12. De Rham representations

We now carry out the constructions of §4, with B = BdR. If V is a p-adic representation

of GK , then we set DdR(V ) = (BdR ⊗Qp V )GK , which is a filtered K-vector space (if V

is E-linear, then DdR(V ) is a E ⊗Qp K-module). We say that V is de Rham if it is BdR-

admissible. Note that since Qp ⊂ BdR, theorem 5.2 implies that potentially de Rham

representation are de Rham. If V is de Rham, then a Hodge-Tate weight of V is an

integer h, such that Fil−hDdR(V ) 6= Fil−h+1DdR(V ).

The functor DdR : {de Rham representations} → {filtered K-vector spaces} “forgets”

a lot of information about V . For instance, if V is potentially unramified, then it is de

Rham, but then DdR(V ) is the filtered vector space for which Fil0DdR(V ) = DdR(V ) and

Fil1DdR(V ) = {0}.
The following theorem of Faltings proves a conjecture of Fontaine, and shows that

representations of GK “coming from geometry” are de Rham.

Theorem 12.1. — If X is proper and smooth over K, and if V = H i
et(XQp

,Qp), then

V is a de Rham representation of GK, and DdR(V ) = H i
dR(X/K).

Conversely, we have the following conjecture of Fontaine and Mazur. If F is a number

field, then we say that a representation of GF comes from geometry if it is a subquotient

of the étale cohomology of some algebraic variety over F .

Conjecture 12.2. — If F is a number field, and if V is an irreducible p-adic represen-

tation of GF , which is unramified at almost every place of F , and which is de Rham at

every place of F above p, then V comes from geometry.

If in addition dim(V ) = 2 and F = Q, then we actually expect V to come from a

modular form; this has been proved in most cases by Emerton and Kisin.

13. The rings Bmax and Bst

Recall than in §10, we constructed the ring B̃+ = {
∑

k�−∞ p
k[xk], where xk ∈ Ẽ+}. If

r > 0, then we define a valuation V(·, r) on B̃+ by the formula

V(x, r) = inf
k

valE(xk) + k
pr

p− 1
,

and we define B̃[0;r] to be the completion of B̃+ for V(·, r) (note that more generally, one

can define some rings B̃[r;s], which explains the heavy notation). If s > r, then we have

an injective map B̃[0;s] → B̃[0;r]. The ring B+
max is B̃[0;r0], where r0 = (p−1)/p. It contains

B̃+ (and hence Q̂unr
p ), but also the element t defined in §11 (which belongs to B̃[0;r] for

all r > 0), and we set Bmax = B+
max[1/t]. The Frobenius map ϕ : B̃+ → B̃+ gives rise to
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a bijection ϕ : B̃[0;r0] → B̃[0;pr0], and hence to an injective map ϕ : B+
max → B+

max. We use

the ring Bmax instead of Fontaine’s Bcris for technical reasons, but they are almost equal;

for example, ϕ(Bmax) ⊂ Bcris ⊂ Bmax.

The map B̃+ → Bh is continuous for the valuation V(·, r0) on B̃+ and therefore extends

to a continous map B+
max → B+

dR. Recall that if K is a finite extension of Qp, then

K ⊂ B+
dR. Let K0 = K ∩Qunr

p be the maximal unramified extension of Qp contained in

K, so that K0 ⊂ B+
max.

Theorem 13.1. — The natural map K ⊗K0 B+
max → B+

dR is injective.

One can easily prove that the map K⊗K0 B̃+ → B+
dR is injective, and in order to prove

the theorem, one needs to show that the map remains injective after completing the left

hand side, which is rather delicate.

As a corollary, we get that K ⊗K0 Bmax → BdR is also injective, and using the fact

that BGK
dR = K, we get that Frac(Bmax)

GK = K0.

Let u be a variable, and let B+
st = B+

max[u] and Bst = Bmax[u]. We extend the action of

GQp from Bmax to Bst by g(u) = u+ a(g)t, where a(g) is defined by g(p1/p
n
) = ζ

a(g)
pn p1/p

n
.

We also extend ϕ by ϕ(u) = pu, and we define a monodromy map N : Bst → Bst by

N = −d/du, so that Nϕ = pϕN .

The series log([p̃]/p) = log(1 + ([p̃]/p − 1)) converges in B+
dR, and if we choose log(p)

(usually, we choose log(p) = 0), then we can talk about log([p̃]) ∈ B+
dR. We then extend

the map B+
max → B+

dR to B+
st, by sending u to log([p̃]), which is a GQp-equivariant map.

Theorem 13.2. — The natural map K ⊗K0 B+
st → B+

dR is injective.

This implies that K ⊗K0 Bst → BdR is injective, and that Frac(Bst)
GK = K0. Finally,

we have the following result (condition (2) of the definition of a ring of periods in §4).

Theorem 13.3. — If y ∈ Bst and if Qp ·y is stable by GK, then y = y0t
h with y0 ∈ Q̂unr

p

and h ∈ Z.

In particular, such a y actually belongs to Bmax, and is invertible in Bmax.

14. Crystalline and semi-stable representations

We now carry out the constructions of §4, with B = Bmax or Bst. If V is a p-adic rep-

resentation of GK , then we set Dcris(V ) = (Bmax⊗Qp V )GK and Dst(V ) = (Bst⊗Qp V )GK .

They are both K0-vector spaces, Dst(V ) is a (ϕ,N)-module and Dcris(V ) = Dst(V )N=0 is

a ϕ-module. We say that V is crystalline or semistable if V is Bmax-admissible or Bst-

admissible respectively. Theorem 13.2 implies that K⊗K0 Dst(V ) injects into DdR(V ), so
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that if V is semistable, then it is also de Rham. The space Dst(V ) is then a filtered (ϕ,N)-

module over K, that is a K0-vector space D, with an invertible semilinear endomorphism

ϕ, an endomorphism N such that Nϕ = pϕN , and a filtration on DK = K⊗K0D. In the

next section, we’ll see how technical properties of Bmax and Bst translate into properties

of Dcris(·) and Dst(·).
The property of being “crystalline” or “semistable” is the analogue of having “good

reduction” or being “semistable” for ` 6= p as in §3. For example, we have the following

result (due to Iovita for “crystalline” and to Breuil for “semistable”), which is a p-adic

analogue of the Néron-Ogg-Shafarevich criterion for ` 6= p.

Theorem 14.1. — If A is an abelian variety over K, then VpA is crystalline if and only

if A has good reduction, and VpA is semistable if and only if A has semistable reduction.

We say that V is potentially semistable if there exists some finite Galois extension L of

K, such that V |GL
is semistable. In this case, Dst(V |GL

) is a filtered (ϕ,N,Gal(L/K))-

module over L. Potentially semistable representations are de Rham, and we have the

following result, which may be seen as a p-adic analogue of theorem 3.1.

Theorem 14.2. — Every de Rham representation is potentially semistable.

Just as in §3, we can attach a Weil-Deligne representation WD(V ) to a potentially

semistable representation V of GK . If D = Dst(V |GL
), then D is the space of this

representation, and NWD = N and ρWD(w) = wϕ−hn(w) if w ∈ WK , where WK acts

on D through Gal(L/K), and q = ph = Card(kK). The fact that Nϕ = pϕN implies

that NWDρWD(w) = q−n(w)ρWD(w)NWD. Contrary to the case ` 6= p, this Weil-Deligne

representation is not enough to recover V , since it does not take into account the filtration.

If f is a modular eigenform, then one can attach to it a p-adic representation Vpf ,

as well as a smooth admissible representation Πpf of GL2(Qp), and we then have the

following result of Saito.

Theorem 14.3. — If f is a modular eigenform, then Vpf is potentially semistable, and

WD(Vpf) is the Weil-Deligne representation attached to Πpf by the local Langlands cor-

respondence.

If in addition p - N , then Vpf is crystalline, and the above theorem completely deter-

mines Dcris(Vpf), because there is only one choice for the filtration (in this case, theorem

14.3 was previously proved by Scholl). We get Dcris(Vpf)∗ = Dk,ap where k = k(f) and
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ap = ap(f), and Dk,ap = Ee1 ⊕ Ee2 with

Mat(ϕ) =

(
0 −1

pk−1 ap

)
and FiliDk,ap =


Dk,ap if i 6 0,

Ee1 if 1 6 i 6 k − 1,

{0} if i > k.

15. Admissible filtered (ϕ,N)-modules

By the constructions of the previous section, we have a functor Dst(·), from the category

of semistable representations of GK to the category of filtered (ϕ,N)-modules over K.

In this section, we explain how technical properties of the ring Bst can be used to prove

some properties of the functor Dst(·). In particular, we will see that it is fully faithful,

and give a characterization of its image.

Theorem 15.1. — We have Bϕ=1
max ∩B+

dR = Qp.

As a corollary, we see that one can recover Qp from the filtered (ϕ,N)-module structure

of Bst, since we have Qp = BN=0,ϕ=1
st ∩ Fil0BdR. This way, we get the following full

faithfulness result.

Corollary 15.2. — The functor V 7→ Dst(V ) is fully faithful.

Indeed, if V is semistable, then Bst ⊗K0 Dst(V ) = Bst ⊗Qp V , so that

V = (Bst ⊗K0 Dst(V ))N=0,ϕ=1 ∩ Fil0(BdR ⊗K DdR(V )).

Let us now characterize the image of Dst(·). If D is a 1-dimensional filtered (ϕ,N)-

module over K, we define tN(D) to be valp(Mat(ϕ)) and tH(D) to be the integer h such

that FilhDK = DK and Filh+1DK = {0}. If D is of arbitrary dimension, then we let

tN(D) = tN(detD) and tH(D) = tH(detD).

If V is a semistable representation, then det Dst(V ) = Dst(detV ), and in the notation

of theorem 13.3, we have tN(Dst(V )) = tH(Dst(V )) = h.

IfD is a 1-dimensional subobject of Dst(V ), and y ∈ D, then ϕ(y) = λy for some λ ∈ K0

of valuation tN(D), and y ∈ FilhDK for h = tH(D). As a corollary of theorem 15.1, we

get that if h > valp(λ) + 1, then Bϕ=λ
max ∩ thB+

dR = {0}. This implies that tH(D) 6 tN(D).

If D is a subobject of Dst(V ) of dimension r, then detD is a 1-dimensional subobject of

Dst(Λ
rV ), and we can apply the above reasoning to get again tH(D) 6 tN(D).

We say that a filtered (ϕ,N)-module D over K is admissible if tH(D) = tN(D) and if

tH(D′) 6 tN(D′) for every subobject D′ of D.

Proposition 15.3. — If V is a semistable representation, then Dst(V ) is an admissible

filtered (ϕ,N)-module over K.
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Fontaine had conjectured that conversely, every admissible filtered (ϕ,N)-module over

K is the Dst of some semistable representation V of GK , and this is now a theorem of

Colmez and Fontaine.

Theorem 15.4. — The functor Dst(·) gives rise to an equivalence of categories, between

the category of semistable representations of GK and the category of admissible filtered

(ϕ,N)-modules over K.

Thus in principle, one can answer any question about a semistable representation,

merely by looking at the attached filtered (ϕ,N)-module. In practice, this can be quite

hard. For example, computing the reduction modulo p of the crystalline representation

attached to the filtered ϕ-module Dk,ap given at the end of §14 is (as of January 2013)

an open problem.

16. The groups H1
∗ (K,V )

If V is a p-adic representation of GK , then H1(K,V ) classifies extensions E of Qp by

V , that is representations E inside the exact sequence: 0 → V → E → Qp → 0. More

generally, extensions of Y by X are classified by H1(K,X⊗Y ∗). Given some property of

representations, we are interested in the subset of H1(K,V ) corresponding to extensions

having that property. In particular, we denote by H1
f (K,V ) or H1

st(K,V ) or H1
g (K,V )

the classes of extensions which are crystalline or semistable or de Rham, respectively. If

V is crystalline, then H1
f (K,V ) = ker(H1(K,V ) → H1(K,Bmax ⊗Qp V )), and we have

similar statements for H1
st and H1

g . The following result is an easy consequence of theorem

14.2, but had been proved before by Hyodo and was then seen as evidence for theorem

14.2.

Theorem 16.1. — If V is semistable, then H1
st(K,V ) = H1

g (K,V ).

We also define H1
e (K,V ) = ker(H1(K,V ) → H1(K,Bϕ=1

max ⊗Qp V )). Recall that by

theorem 5.1, there is a perfect pairing H1(K,V ) × H1(K,V ∗(1)) → Qp. The following

theorem of Bloch and Kato computes the orthogonals of the H1
∗ .

Theorem 16.2. — If V is a crystalline representation, then

H1
f (K,V )⊥ = H1

f (K,V ∗(1)) and H1
e (K,V )⊥ = H1

g (K,V ∗(1)).

One can compute the dimensions of the H1
∗ (K,V ), by using the so-called fundamental

exact sequence 0→ Qp → Bϕ=1
max → BdR/B

+
dR → 0, which when used along with the fact

that 1− ϕ : Bmax → Bmax is surjective, gives rise to

0→ Qp → Bmax
x 7→((1−ϕ)x,x)−−−−−−−−→ Bmax ⊕BdR/B

+
dR → 0.
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By tensoring the above exact sequence with a crystalline representation V , and taking

invariants under GK , one finds

0→ V GK → Dcris(V )→ Dcris(V )⊕DdR(V )/Fil0DdR(V )→ H1
f (K,V )→ 0,

where we use the fact that (BdR/B
+
dR⊗Qp V )GK = DdR(V )/Fil0DdR(V ), if V is de Rham.

This tells us that (if we write h1∗ for dimQp H
1
∗ )

h1f (K,V ) = [K : Qp](dimQp V − dimK Fil0DdR(V )) + dimQp V
GK .

Likewise, we can prove that

h1e(K,V ) = h1f (K,V )− dimQp Dcris(V )ϕ=1,

h1g(K,V ) = h1f (K,V ) + dimQp Dcris(V
∗(1))ϕ=1.

For example, let V = Qp(r) and d = [K : Qp]. By using the above formulas, we find

the following dimensions for the various H1
∗ (K,Qp(r)).

r 6 −1 0 1 > 2
h1(K,Qp(r)) d d+ 1 d+ 1 d
∗ = e 0 0 d d
∗ = f 0 1 d d
∗ = g 0 1 d+ 1 d

Let us make a few comments about this table.

1. For r > 2, we see that every extension of Qp by Qp(r) is crystalline.

2. For r = 1, they are all semi-stable, and we saw in §5 that the Kummer map δ :

Qp ⊗Zp K̂
× → H1(K,Qp(1)) is an isomorphism. The subset H1

f (K,Qp(1)) then

corresponds to the image of Qp⊗Zp Ô×K , which is the characteristic zero analogue of

“peu ramifiées” extensions.

3. For r = 0, the h1 counts the number of independent Zp-extensions of K, and

H1
f (K,Qp) corresponds to the unramified one.

4. For r 6 −1, one can (easily) show that all extensions are Cp((t))-admissible, but

since no nontrivial ones are BdR-admissible, BdR is not isomorphic to Cp((t)).

If V is de Rham, and we tensor the exact sequence 0→ Qp → Bϕ=1
max → BdR/B

+
dR → 0

by V , and take GK-invariants, then we find a connecting map: DdR(V )/Fil0DdR(V ) →
H1
e (K,V ), which is denoted by expV , and called Bloch-Kato’s exponential. If A is an

abelian variety (or a formal group), then VpA is de Rham, DdR(VpA)/Fil0DdR(VpA) is

identified with the Lie Algebra of A, and if δA denotes the Kummer map, then the
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following diagram commutes, which helps to explain the terminology.

Lie(A)
exp−−−→ Q⊗Z A(OK)∥∥∥ δA

y
DdR(VpA)/Fil0DdR(VpA)

expV−−−→ H1(K,VpA)

It also shows that the image of the Kummer map always lies in the H1
e .

17. A p-adic period pairing

Let K be a finite unramified extension of Qp, and let G be a 1-dimensional formal

group of height h over OK , whose addition law is given by X ⊕ Y ∈ OK [[X, Y ]]. We

denote by [n](X) the “multiplication by n” power series. The Tate module of G is

TpG = {(u0, u1, . . .), where ui ∈ mCp and u0 = 0 and [p](ui+1) = ui}. The space

VpG = Qp ⊗Zp TpG is a p-adic representation of GK of dimension h, which we know is

crystalline. We will see here a more precise version of this result.

A differential form on G is ω(X) = α(X)dX, where α(X) ∈ K[[X]], and we denote by

Fω(X) the unique power series such that dFω(X) = ω(X) and Fω(0) = 0. We say that

1. ω is invariant, if Fω(X ⊕ Y ) = Fω(X) + Fω(Y );

2. ω is exact, if Fω(X) ∈ K ⊗OK
OK [[X]];

3. ω is of the second kind, if Fω(X ⊕ Y )− Fω(X)− Fω(Y ) ∈ K ⊗OK
OK [[X, Y ]].

The first de Rham cohomology group of G is then given by H1
dR(G/K) = {second

kind}/{exact}. This is a K-vector space of dimension h, equipped with the filtration

Fil0H1
dR = H1

dR and Fil1H1
dR = {invariant} and Fil2H1

dR = {0}.

Theorem 17.1. — If ω is of the second kind, if u ∈ TpG, and if ûn ∈ Ã+ is such that

θ(ûn) = un for every n > 0, then

1. the sequence {pnFω(ûn)}n>0 converges in B+
max, to an element

∫
u
ω;

2. this element only depends on u and on the class of ω;

3. the resulting map H1
dR(G/K) × VpG → B+

max is a perfect pairing, compatible with

the action of GK and the filtrations.

For example, if G = Gm and ω(X) = dX/(1 + X) and u = (0, ζp − 1, . . .), then one

can take ûn = [ε1/p
n
]− 1 for n > 0, and then

∫
u
ω = t.

As a consequence of theorem 17.1, we recover the fact that VpG is crystalline, and

that Dcris(VpG) = H1
dR(G/K)∗, using the p-adic period pairing. This construction can be

extended to the case of abelian varieties.
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