ON *p*-ADIC GALOIS REPRESENTATIONS

by

Laurent Berger

Contents

Introduction	1
1. The Galois group of \mathbf{Q}	2
2. Ramification of local fields, I	2
3. <i>p</i> -adic representations with $\ell \neq p$	3
4. Rings of periods	3
5. Galois cohomology	4
6. Ramification of local fields, II	5
7. Cyclotomic extensions	6
8. The cohomology of \mathbf{C}_p	6
9. Witt vectors	7
10. The rings $\widetilde{\mathbf{E}}^+$ and $\widetilde{\mathbf{B}}^+$	8
11. The field \mathbf{B}_{dR}	9
12. De Rham representations	10
13. The rings \mathbf{B}_{max} and \mathbf{B}_{st}	10
14. Crystalline and semi-stable representations	11
15. Admissible filtered (φ, N) -modules	13
16. The groups $H^1_*(K, V)$	14
17. A <i>p</i> -adic period pairing	16
References	17

Introduction

These are the notes for my part of the course "p-adic Galois representations and global Galois deformations". My aim was to give a short introduction to the p-adic Hodge theory necessary for formulating the local conditions imposed on deformations of p-adic representations. I also included some material on the technical tools used for proving the properties of Fontaine's rings of periods, although I usually gave no actual proofs of the

results. In these notes, there are a few changes from the actual course; for example I exchanged ℓ and p in various places in order to follow the notation of the other courses.

1. The Galois group of Q

Let E be a finite extension of \mathbf{Q}_p , and let $G_{\mathbf{Q}} = \operatorname{Gal}(\mathbf{Q}/\mathbf{Q})$. A *p*-adic representation of $G_{\mathbf{Q}}$ is a finite dimensional continuous *E*-linear representation *V* of $G_{\mathbf{Q}}$. We wish to study *p*-adic representations of $G_{\mathbf{Q}}$, either individually or in families.

Let ℓ be a prime number (which may or may not be equal to p) and let λ be a place of $\overline{\mathbf{Q}}$ above ℓ . The group $D_{\lambda} = \{g \in G_{\mathbf{Q}} \text{ such that } g(\lambda) = \lambda\}$ is the decomposition group of λ . If λ' is another place above ℓ , then D_{λ} and $D_{\lambda'}$ are conjugate, and we write D_{ℓ} for the resulting group, which is well-defined up to conjugation in $G_{\mathbf{Q}}$.

The choice of λ is equivalent to the choice of an embedding of $\overline{\mathbf{Q}}$ into $\overline{\mathbf{Q}}_{\ell}$, and this gives rise to a map $D_{\ell} \to G_{\mathbf{Q}_{\ell}}$, which is easily seen to be an isomorphism. The groups $G_{\mathbf{Q}_{\ell}}$ are easier to understand than $G_{\mathbf{Q}}$, thanks to ramification theory (recalled in §2).

Given a *p*-adic representation V, one then studies its restriction to D_{ℓ} for various primes ℓ , and the following result says that we do not lose too much information when doing so.

Proposition 1.1. — If S is a set of prime numbers of density 1, and if V is a semisimple representation of $G_{\mathbf{Q}}$, then V is determined by its restriction to the D_{ℓ} with $\ell \in S$.

2. Ramification of local fields, I

Let ℓ be a prime number, let K be a finite extension of \mathbf{Q}_{ℓ} , and let \mathcal{O}_K and \mathfrak{m}_K and k_K and π_K denote its ring of integers, maximal ideal, residue field and a uniformizer respectively. Let K^{unr} denote the maximal unramified extension of K, and let K^{tame} denote the maximal tamely ramified extension of K.

The group $\operatorname{Gal}(\overline{\mathbf{F}}_{\ell}/k_K)$ is isomorphic to $\mathbf{\hat{Z}}$, and is topologically generated by $\operatorname{Fr}_m = x \mapsto x^m$ where $m = \operatorname{Card}(k_K)$. The inertia subgroup I_K of G_K is the kernel of the natural map $G_K \to \operatorname{Gal}(\overline{\mathbf{F}}_{\ell}/k_K)$, and we then have $I_K = \operatorname{Gal}(\overline{\mathbf{Q}}_{\ell}/K^{\operatorname{unr}})$. Likewise, we have

$$K^{\text{tame}} = \bigcup_{\ell \nmid n} K^{\text{unr}}(\pi_K^{1/n})$$

so that $\operatorname{Gal}(K^{\operatorname{tame}}/K^{\operatorname{unr}}) = \varprojlim_{\ell \nmid n} \mu_n$, where the map is given by

$$g \mapsto \{g(\pi_K^{1/n})/\pi_K^{1/n}\}_{n \ge 1}$$

In particular, if $\alpha \in \operatorname{Gal}(K^{\operatorname{tame}}/K^{\operatorname{unr}})$, and if the image of $\sigma \in \operatorname{Gal}(K^{\operatorname{tame}}/K)$ in $\operatorname{Gal}(\overline{\mathbf{F}}_{\ell}/k_K)$ is Fr_m , then $\sigma\alpha\sigma^{-1} = \alpha^m$. Finally, $I_K^{(\ell)} = \operatorname{Gal}(\overline{\mathbf{Q}}_{\ell}/K^{\operatorname{tame}})$ is the ℓ -Sylow subgroup of I_K , called the wild inertia subgroup.

3. *p*-adic representations with $\ell \neq p$

An easy corollary of the equation $\sigma \alpha \sigma^{-1} = \alpha^m$ is Grothendieck's monodromy theorem.

Theorem 3.1. — If V is a p-adic representation of G_K , with K as above, and if $\ell \neq p$, then there exists a finite extension L of K, such that $V|_{I_L}$ is unipotent.

We say that a *p*-adic representation V of G_K has good reduction if $V|_{I_K}$ is trivial, and we say that V is semistable if $V|_{I_K}$ is unipotent. Grothendieck's theorem above then says that every *p*-adic representation of G_K is potentially semistable (recall that $\ell \neq p$).

There is a useful way of describing the *p*-adic representations of G_K . Let K be as before, so that there is a map $n : G_K \to \widehat{\mathbf{Z}}$, defined by $\overline{g} = \operatorname{Fr}_m^{n(g)}$. The Weil group W_K is $\{g \in G_K, \text{ such that } n(g) \in \mathbf{Z}\}$. A Weil-Deligne representation is the datum of a representation V of W_K (given by a map $\rho : W_K \to \operatorname{End}(V)$) and of a nilpotent map $N \in \operatorname{End}(V)$ such that $N\rho(g) = m^{-n(g)}\rho(g)N$.

Choose a compatible sequence $\{\zeta_{\ell^n}\}_{n\geq 0}$ of primitive ℓ^n -th roots of 1, and let $t: I_K \to \mathbf{Z}_{\ell}$ be the map determined by $g(\pi_K^{1/\ell^n}) = \zeta_{\ell^n}^{t(g)} \pi_K^{1/\ell^n}$. Choose also $\sigma \in G_K$ such that $n(\sigma) = 1$. If V is a p-adic representation of G_K , then by Grothendieck's theorem, there exists a finite extension L of K such that $\rho(g)$ is unipotent if $g \in I_L$. In this case, the map $N = \log \rho(g)/t(g) \in \text{End}(V)$ is well-defined, and independent of $g \in I_L$. We attach to V a Weil-Deligne representation $(\rho_{\text{WD}}, N_{\text{WD}})$ on the same underlying space V, by the formulas $\rho_{\text{WD}}(w) = \rho(w) \exp(-t(\sigma^{-n(w)}w) \cdot N)$ and $N_{\text{WD}} = N$.

The isomophism class of the resulting representation does not depend on the choices made, and we can easily recover V from (ρ_{WD}, N_{WD}) .

4. Rings of periods

From here to the end of these notes, we assume that $\ell = p$, so that K is now a finite extension of \mathbf{Q}_p . We would like to have a classification of p-adic representations of G_K similar to the one above, but this is harder to obtain. Indeed, let $\chi : G_K \to \mathbf{Z}_p^{\times}$ be the cyclotomic character, defined by $g(\zeta_{p^n}) = \zeta_{p^n}^{\chi(g)}$. We can write $\chi = \omega \cdot \langle \chi \rangle$ with $\omega \in \mu_{p-1}$ and $\langle \chi \rangle \in 1 + p\mathbf{Z}_p$ and we can then consider $\omega^r \langle \chi \rangle^s$ with $r \in \mathbf{Z}/(p-1)\mathbf{Z}$ and $s \in \mathbf{Z}_p$. All such characters are representations of G_K but it turns out that they are "good" only if $s \in \mathbf{Z}$. It is hard to distinguish such characters merely by looking at their image or kernel, and in order to classify p-adic representations, one therefore needs more than mere ramification theory.

The main tool for doing so is Fontaine's construction of rings of periods. A ring of period if a \mathbf{Q}_p -algebra B, endowed with an action of G_K , and possibly some supplementary

structures, compatible with the action of G_K (for example a filtration, a Frobenius map, a monodromy map...). We require that B is a domain, that (1) $\operatorname{Frac}(B)^{G_K} = B^{G_K}$ and that (2) if $y \in B$ is such that $\mathbf{Q}_p \cdot y$ is stable under G_K , then $y \in B^{\times}$. For example, all these conditions are automatically fulfilled if B is a field.

If V is a p-adic representation of G_K , we then define $D_B(V) = (B \otimes_{\mathbf{Q}_p} V)^{G_K}$, which is a B^{G_K} -vector space. There is a natural map

$$\alpha: B \otimes_{B^{G_K}} \mathcal{D}_B(V) \to B \otimes_{\mathbf{Q}_p} V,$$

and condition (1) above implies that α is injective, so that $D_B(V)$ is of dimension $\leq \dim_{\mathbf{Q}_p}(V)$. We say that V is B-admissible if $D_B(V)$ is of dimension $\dim_{\mathbf{Q}_p}(V)$. By condition (2) above, this is the case if and only if α is surjective. If V is E-linear, then we say that it is B-admissible if the underlying \mathbf{Q}_p -linear representation is B-admissible.

In this way, we have defined the subcategory of *B*-admissible *p*-adic representations of G_K , inside the category of all *p*-adic representations of G_K . This subcategory is stable under subquotients, direct sums, tensor products and duals. If *B* has some supplementary structures, then these descend to $D_B(V)$, and in this way we obtain some nontrivial invariants of *B*-admissible representations, which can then be used to classify them.

5. Galois cohomology

In this section, we give a few reminders about Galois cohomology groups. If V is a p-adic representation of G_K , then we write $H^i(K, V)$ for $H^i(G_K, V)$. We also write $h^i(V) = \dim_{\mathbf{Q}_p} H^i(K, V)$. Let V^* be the dual of V, and let $V^*(1) = V^* \otimes \chi$.

If i = 0, 1 or 2, then the cup product

$$\cup: H^{i}(K, V) \times H^{2-i}(K, V^{*}(1)) \to H^{2}(K, V \otimes V^{*}(1))$$

gives rise to a pairing $H^i(K, V) \times H^{2-i}(K, V^*(1)) \to H^2(K, \mathbf{Q}_p(1))$. We then have the following theorem of Tate.

Theorem 5.1. — The groups $H^i(K, V)$ are finite dimensional \mathbf{Q}_p -vector spaces, they are $\{0\}$ if $i \ge 3$, we have $H^2(K, \mathbf{Q}_p(1)) = \mathbf{Q}_p$, the pairing $H^i(K, V) \times H^{2-i}(K, V^*(1)) \rightarrow \mathbf{Q}_p$ is perfect, and $h^0(V) - h^1(V) + h^2(V) = -[K : \mathbf{Q}_p] \dim(V)$.

If $y \in K^{\times}$, let $\{y_n\}_{n\geq 0}$ be a sequence such that $y_0 = y$ and $y_{n+1}^p = y_n$. Let $\delta(y) : G_K \to \mathbf{Z}_p$ be the map determined by the equation $g(y_n) = \zeta_{p^n}^{\delta(y)(g)} y_n$, so that $\delta(y)(gh) = \delta(y)(g) + \chi(g)\delta(y)(h)$. We then have $\delta(y) \in H^1(K, \mathbf{Q}_p(1))$, and the map $y \mapsto \delta(y)$ is the Kummer map. It extends to a map $\delta : \mathbf{Q}_p \otimes_{\mathbf{Z}_p} \widehat{K^{\times}} \to H^1(K, \mathbf{Q}_p(1))$, which is an isomorphism by Kummer theory. In particular, we have $h^1(\mathbf{Q}_p(1)) = [K : \mathbf{Q}_p] + 1$, which is compatible with theorem 5.1.

If B is a ring of periods, then $W = B \otimes_{\mathbf{Q}_p} V$ is a semilinear representation of G_K : it is a free B-module, with a semilinear action of G_K . If we choose a basis of such a W, then $g \mapsto \operatorname{Mat}(g)$ gives a cocyle on G_K with values in $\operatorname{GL}_d(B)$, and choosing a different basis gives a cohomologous cocycle. In this way, we get $[W] \in H^1(G_K, \operatorname{GL}_d(B))$, and the original representation V is then B-admissible if and only if $[B \otimes_{\mathbf{Q}_p} V]$ is the trivial cohomology class. The following result, known as Hilbert's theorem 90, is then useful.

Theorem 5.2. — If L/K is finite Galois, then $H^1(Gal(L/K), GL_d(L)) = \{0\}$.

As a consequence, we see for example that if $\overline{\mathbf{Q}}_p \subset B$, then potentially *B*-admissible representations are already *B*-admissible.

We can deduce from theorem 5.2 that $H^1(\text{Gal}(\overline{\mathbf{F}}_p/k_K), \text{GL}_d(\overline{\mathbf{F}}_p)) = \{0\}$, and an argument of successive approximations then shows that

$$H^1(G_K/I_K, \operatorname{GL}_d(\widehat{\mathbf{Q}}_p^{\operatorname{unr}})) = \{0\}$$

This way, we see that unramified representations of G_K are $\widehat{\mathbf{Q}}_p^{\text{unr}}$ -admissible.

6. Ramification of local fields, II

In this section, we collect various statements about the ramification of extensions of \mathbf{Q}_p , which are useful for proving some of the properties of Fontaine's rings of periods.

We give in particular a few reminders about the conductor and the different of a finite extension K/F. Let $\operatorname{val}_K(\cdot)$ be normalized by $\operatorname{val}_K(K^{\times}) = \mathbb{Z}$. Recall that if $u \ge -1$, then one defines the ramification filtration $\operatorname{Gal}(K/F)_u = \{g \in \operatorname{Gal}(K/F) \text{ such that}$ $\operatorname{val}_K(gx - x) \ge u + 1$ for all $x \in \mathcal{O}_K\}$. Herbrand defined a function $\psi_{K/F}$, such that if we define $\operatorname{Gal}(K/F)^v = \operatorname{Gal}(K/F)_{\psi_{K/F}(v)}$, then $\operatorname{Gal}(K/F)^v$ is the image of $\operatorname{Gal}(L/F)^v$ whenever L is an extension of K. One can then define G_F^v for $v \ge -1$.

If K/F is Galois, then we define $K^u = K^{\operatorname{Gal}(K/F)^u}$, and if K is not Galois then we set $K^u = L^u \cap K$, where L/F is Galois and contains K. For example, we have $\operatorname{Gal}(\mathbf{Q}_p(\zeta_{p^n})/\mathbf{Q}_p)^i = \operatorname{Gal}(\mathbf{Q}_p(\zeta_{p^n})/\mathbf{Q}_p(\zeta_{p^i}))$, and therefore $\mathbf{Q}_p(\zeta_{p^n})^u \subset \mathbf{Q}_p(\zeta_{p^{\lfloor u \rfloor}})$. The conductor of K (with respect to F) is the inf of the real numbers u with $K^u = K$.

Recall also that we have the different $\mathfrak{d}_{K/F} = \check{\mathcal{O}}_K^{-1}$, where $\check{\mathcal{O}}_K$ is the dual of \mathcal{O}_K with respect to the pairing $(x, y) \mapsto \operatorname{Tr}_{K/F}(xy)$. The different and conductors are related by the following formula.

Proposition 6.1. — We have

$$\operatorname{val}_p(\mathfrak{d}_{K/F}) = \int_{-1}^{\infty} \left(1 - \frac{1}{[K:K^u]}\right) du.$$

7. Cyclotomic extensions

Let $F = \mathbf{Q}_p$, let $F_n = \mathbf{Q}_p(\zeta_{p^n})$ for $n \ge 1$, and let $F_{\infty} = \bigcup_{n\ge 1} F_n$. We know that F_n is a totally ramified extension of F of degree $p^{n-1}(p-1)$, and also that $\mathcal{O}_{F_n} = \mathbf{Z}_p[\zeta_{p^n}]$. If $n \ge 1$ and $y \in F_{\infty}$, then $y \in F_{n+k}$ for some $k \gg 0$, and $R_n(y) = p^{-k} \operatorname{Tr}_{F_{n+k}/F_n}(y)$ does not depend on k. The map $R_n : F_{\infty} \to F_n$ is then a G_F -equivariant projection. We have $R_n(1) = 1$ while $R_n(\zeta_{p^{n+k}}) = 0$ if $1 \le j \le p^k - 1$, so that $R_n(\mathcal{O}_{F_{n+k}}) \subset \mathcal{O}_{F_n}$. This implies that if $y \in F_{\infty}$, then $\operatorname{val}_p(R_n(y)) \ge \operatorname{val}_p(y) - 1/(p^{n-1}(p-1))$, and therefore that R_n extends by uniform continuity to a projection $R_n : \widehat{F}_{\infty} \to F_n$. In addition, we have $R_n(y) = y$ if $y \in F_{\infty}$ and $n \gg 0$, so that if $y \in \widehat{F}_{\infty}$ then $R_n(y) \to y$ as $n \to \infty$.

Let K be a finite extension of \mathbf{Q}_p , let $K_n = K(\zeta_{p^n})$ for $n \ge 1$, and let $K_{\infty} = \bigcup_{n \ge 1} K_n$. If $n \gg 0$, then K_{n+1}/K_n is totally ramified of degree p, and K_n/F_n is of degree $d = K_{\infty}/F_{\infty}$ if $n \ge n(K)$. Proposition 6.1, and the fact that $F_n^u \subset F_{\lfloor u \rfloor}$, can be used to show that the sequence $\{p^n \operatorname{val}_p(\mathfrak{d}_{K_n/F_n})\}_{n\ge 1}$ is eventually constant. In particular, if $\delta > 0$ then there exist $n(\delta) \ge n(K)$ such that if $n \ge n(\delta)$, then $\operatorname{val}_p(\mathfrak{d}_{K_n/F_n}) \le \delta$. This implies that if $n \ge n(\delta)$, then there exists a basis e_1, \ldots, e_d of \mathcal{O}_{K_n} over \mathcal{O}_{F_n} , such that $\operatorname{val}_p(e_i^*) \ge -\delta$.

If $y \in \mathcal{O}_{K_{n+k}}$, then we can write $y = \sum_{j=1}^{d} y_j e_j^*$, where $y_j = \operatorname{Tr}_{K_{\infty}/F_{\infty}}(ye_j)$ belongs to $\mathcal{O}_{F_{n+k}}$, and we set $R_n(y) = \sum_{j=1}^{d} R_n(y_j) e_j^*$. The resulting map $R_n : K_{\infty} \to K_n$ is then a G_K -equivariant projection, which satisfies $\operatorname{val}_p(R_n(y)) \ge \operatorname{val}_p(y) - 1/(p^{n-1}(p-1)) - \delta$, and therefore R_n extends, by uniform continuity, to a projection $R_n : \widehat{K}_{\infty} \to K_n$, such that $R_n(y) \to y$ as $n \to \infty$ as above.

8. The cohomology of C_p

Let \mathbf{C}_p be the *p*-adic completion of $\overline{\mathbf{Q}}_p$, so that \mathbf{C}_p is a complete and algebraically closed field. If *L* is a subfield of $\overline{\mathbf{Q}}_p$, then the action of G_L on $\overline{\mathbf{Q}}_p$ extends by continuity to \mathbf{C}_p , and we have the following result of Ax-Sen-Tate.

Theorem 8.1. — If $L \subset \overline{\mathbf{Q}}_p$, then $\mathbf{C}_p^{G_L} = \widehat{L}$.

If L is as above, and $\alpha \in \overline{\mathbf{Q}}_p$, then we set $\Delta_L(\alpha) = \inf_{g \in G_L} \operatorname{val}_p(g(\alpha) - \alpha)$. The main ingredient of the proof of theorem 8.1 is the following result of Le Borgne, which improves upon a similar result of Ax.

Lemma 8.2. — If $\alpha \in \overline{\mathbf{Q}}_p$, then there exists $\beta \in L$, with $\operatorname{val}_p(\alpha - \beta) \ge \Delta_L(\alpha) - 1/(p-1)$.

Let $\psi : G_K \to \mathbf{Z}_p^{\times}$ be a character, which is trivial on $\ker(\chi) = \operatorname{Gal}(\overline{\mathbf{Q}}_p/K_{\infty})$ (for example, one could take $\psi = \chi^h$ with $h \in \mathbf{Z}$).

Theorem 8.3. — If ψ has infinite order, then $H^0(K, \mathbf{C}_p(\psi)) = \{0\}$.

If ψ has finite order, then Hilbert's theorem 90 implies that $\mathbf{C}_p(\psi) = \mathbf{C}_p$, and then $H^0(K, \mathbf{C}_p(\psi)) = K$ by theorem 8.1 above. We now give a sketch of the proof of theorem 8.3. If $H^0(K, \mathbf{C}_p(\psi)) \neq \{0\}$, then there exists a nonzero $y \in \mathbf{C}_p$ such that $g(y) = \psi(g)y$ for $g \in G_K$. We apply the maps R_n from §7; since $R_n(y) \to y$, we have $R_n(y) \neq 0$ for $n \gg 0$. The formula $g(R_n(y)) = \psi(g)R_n(y)$ now implies that ψ is trivial on $\operatorname{Gal}(\overline{\mathbf{Q}}_p/K_n)$, and therefore has finite order.

By proving more refined results about K_{∞} , one can also prove that $H^1(K, \mathbf{C}_p(\psi)) = \{0\}$ if ψ has infinite order. Finally, $H^1(K, \mathbf{C}_p)$ is a 1-dimensional K-vector space, generated by $[g \mapsto \log_p \chi(g)]$.

9. Witt vectors

We say that a ring R is perfect if p = 0 and $x \mapsto x^p$ is a bijection on R. We say that a ring A is a perfect p-ring if p is a not a zero divisor, if A is separated and complete for the p-adic topology, and if A/pA is perfect. If $x \in A/pA$, we denote by \hat{x} a lift of x to A. Let $x_0 = x$ and let $x_{i+1} = x_i^{1/p}$. The sequence $\{\hat{x}_i^{p^i}\}_{i\geq 0}$ then converges to an element $[x] \in A$, which is independent of all choices, and is called the Teichmüller lift of x. Every element of A can be written as $\sum_{i\geq 0} p^i[x_i]$ in a unique way.

Let $R = \mathbf{F}_p[\overline{X}_i^{1/p^{\infty}}, \overline{Y}_i^{1/p^{\infty}}]_{i \ge 0}$, and let S be the p-adic completion of $\mathbf{Z}_p[X_i^{1/p^{\infty}}, Y_i^{1/p^{\infty}}]_{i \ge 0}$, so that S is a perfect p-ring with residue ring R. There exist elements $\{S_i\}_{i \ge 0}$ and $\{P_i\}_{i \ge 0}$ of R such that

$$\sum_{i \ge 0} p^i X_i + \sum_{i \ge 0} p^i Y_i = \sum_{i \ge 0} p^i [S_i],$$
$$\sum_{i \ge 0} p^i X_i \times \sum_{i \ge 0} p^i Y_i = \sum_{i \ge 0} p^i [P_i].$$

If A is a perfect p-ring and $\{x_i\}_{i\geq 0}$ and $\{y_i\}_{i\geq 0}$ are two sequences of elements of R, then we have a map $\pi: S \to A$ given by $\pi(X_i) = [x_i]$ and $\pi(Y_i) = [y_i]$. By applying π to the two equations above, we see that

$$\sum_{i \ge 0} p^i[x_i] + \sum_{i \ge 0} p^i[y_i] = \sum_{i \ge 0} p^i[S_i(x, y)],$$
$$\sum_{i \ge 0} p^i[x_i] \times \sum_{i \ge 0} p^i[y_i] = \sum_{i \ge 0} p^i[P_i(x, y)],$$

so that addition and multiplication of elements of A, written as $\sum_{i\geq 0} p^i[x_i]$, are given by universal formulas.

Theorem 9.1. — If R is a perfect ring, then there exists a unique perfect p-ring W(R) such that W(R)/pW(R) = R.

The discussion above shows that one can take $W(R) = \{\sum_{i \ge 0} p^i[x_i] \text{ with } x_i \in R\}$, addition and multiplication being given by the universal formulas. The ring W(R) is called the ring of Witt vectors over R.

Proposition 9.2. — If R is a perfect ring, if A is complete for the p-adic topology, and if $f : R \to A/pA$ is a homomorphism, then f lifts to a unique homomorphism $W(f) : W(R) \to A$.

In the notation of the beginning of this section, we must have $W(f)([x]) = \lim_{n\to\infty} \widehat{f(x_n)}^{p^n}$, and it remains to check that this does give a ring homomorphism.

For example, the map $R \to R$ given by $x \mapsto x^p$ gives rise to the Frobenius map φ on W(R).

Finally, if R is equipped with a valuation $val(\cdot)$, then we can define semivaluations $w_k(\cdot)$ on W(R) by $w_k(\sum_{i\geq 0} p^i[x_i]) = \min_{i\leq k} val(x_i)$. The weak topology of W(R) is the one defined by these semivaluations.

Proposition 9.3. — If R is complete for val(·), then W(R) is complete for the weak topology.

10. The rings \widetilde{E}^+ and \widetilde{B}^+

Fix some $0 < \delta < 1/(p-1)$, and let $I = \{x \in \mathcal{O}_{\mathbf{C}_p}, \text{ with } \operatorname{val}_p(x) \ge 1/(p-1) - \delta\}$. We define $\widetilde{\mathbf{E}}_I^+ = \{(x_0, x_1, \ldots) \text{ where } x_i \in \mathcal{O}_{\mathbf{C}_p}/I, \text{ and } x_{i+1}^p = x_i\}$, so that $\widetilde{\mathbf{E}}_I^+$ is a perfect ring (addition and multiplication being termwise). We have a map from $\{(x^{(0)}, x^{(1)}, \ldots) \text{ where } x^{(i)} \in \mathcal{O}_{\mathbf{C}_p}, \text{ and } (x^{(i+1)})^p = x^{(i)}\}$ to $\widetilde{\mathbf{E}}_I^+$, which can be shown to be a bijection, so that $\widetilde{\mathbf{E}}_I^+$ does not depend on I, and we denote it by $\widetilde{\mathbf{E}}^+$. If $x \in \widetilde{\mathbf{E}}^+$, we set $\operatorname{val}_{\mathbf{E}}(x) = \operatorname{val}_p(x^{(0)})$, and this defines a valuation on $\widetilde{\mathbf{E}}^+$, for which it is complete.

If $\alpha \in \overline{\mathbf{F}}_p$, then $([\alpha^{1/p^n}])_{n \ge 0} \in \widetilde{\mathbf{E}}^+$, and this gives an injective map $\overline{\mathbf{F}}_p \to \widetilde{\mathbf{E}}^+$. The choice of a sequence $\{\zeta_{p^n}\}_{n \ge 0}$ gives rise to an element $\varepsilon = (1, \zeta_p, \ldots) \in \widetilde{\mathbf{E}}^+$, and we define $\overline{\pi} = \varepsilon - 1$, so that $\operatorname{val}_{\mathbf{E}}(\overline{\pi}) = p/(p-1)$. In particular, $\overline{\mathbf{F}}_p[[\overline{\pi}]] \subset \widetilde{\mathbf{E}}^+$. The theorem below is not needed in the sequel, but gives an idea of the structure of $\widetilde{\mathbf{E}}^+$.

Theorem 10.1. — The field $\widetilde{\mathbf{E}}^+[1/\overline{\pi}]$ is the completion of the algebraic closure of $\overline{\mathbf{F}}_p((\overline{\pi}))$.

The more complicated definition of $\widetilde{\mathbf{E}}^+$ which we have given has the advantage of showing that $\widetilde{\mathbf{E}}^+$ is equipped with an action of $G_{\mathbf{Q}_p}$. We then set $\widetilde{\mathbf{A}}^+ = W(\widetilde{\mathbf{E}}^+)$ and $\widetilde{\mathbf{B}}^+ = \widetilde{\mathbf{A}}^+[1/p]$, and both rings are also equipped with an action of $G_{\mathbf{Q}_p}$, as well as the Frobenius map φ . The homomorphism $\widetilde{\mathbf{E}}^+ \to \mathcal{O}_{\mathbf{C}_p}/p$ extends, by theorem 9.2, to **Proposition 10.2.** — The ideal ker(θ) is generated by any element $y \in \text{ker}(\theta)$ such that $\text{val}_{\mathbf{E}}(\overline{y}) = 1$.

This is the case with $y = ([\varepsilon] - 1)/([\varepsilon^{1/p}] - 1)$ (Fontaine's element ω), or with $y = [\tilde{p}] - p$, where $\tilde{p} \in \tilde{\mathbf{E}}^+$ is such that $\tilde{p}^{(0)} = p$.

11. The field B_{dR}

Let $\widetilde{\mathbf{B}}^+$ be the ring constructed in §10, and for $h \ge 1$, let $\mathbf{B}_h = \widetilde{\mathbf{B}}^+ / \ker(\theta)^h$ (in particular, we have $\mathbf{B}_1 = \mathbf{C}_p$). We let $\mathbf{B}_{dR}^+ = \varprojlim_{h\ge 1} \mathbf{B}_h$, so that \mathbf{B}_{dR}^+ is a complete local ring, with maximal ideal $\ker(\theta)$ and residue field \mathbf{C}_p , and is also equipped with an action of $G_{\mathbf{Q}_p}$. An element $y \in \mathbf{B}_{dR}^+$ is invertible if and only if $\theta(y) \ne 0$. For example, $\ker(\theta) = ([\varepsilon] - 1)\mathbf{B}_{dR}^+$, since $\theta([\varepsilon^{1/p}] - 1) \ne 0$. We define $\mathbf{B}_{dR} = \operatorname{Frac}(\mathbf{B}_{dR}^+)$, so that it is a ring of periods, equipped with the additional structure of the filtration given by $\operatorname{Fil}^i \mathbf{B}_{dR} = \ker(\theta)^i$.

The series $([\varepsilon]-1)-([\varepsilon]-1)^2/2+([\varepsilon]-1)^3/3-\cdots$ converges, to an element $t \in \mathbf{B}_{dR}^+$ which also generates ker (θ) , so that $\mathbf{B}_{dR} = \mathbf{B}_{dR}^+[1/t]$. Since $g(\varepsilon) = \varepsilon^{\chi(g)}$, we have $g(t) = \chi(g)t$.

Remark 11.1. — The ring \mathbf{B}_{dR}^+ is isomorphic to $\mathbf{C}_p[\![t]\!]$, but only as abstract rings, and there is no such isomorphism which is compatible with the action of $G_{\mathbf{Q}_p}$ (as we'll see in §16).

The ring \mathbf{B}_{dR}^+ is complete for the ker(θ)-adic topology, but it is also complete for a finer topology. Each ring \mathbf{B}_h is a Banach space (the unit ball being the image of $\widetilde{\mathbf{A}}^+$), and this gives \mathbf{B}_{dR}^+ the structure of a Fréchet space. Note that there is no such thing as a "*p*-adic topology" on \mathbf{B}_{dR}^+ .

If $P(X) \in \mathbf{Q}_p[X]$ is a polynomial with simple roots, then it splits completely in \mathbf{C}_p and hence, by Hensel's lemma, it also splits completely in $\mathbf{B}_{\mathrm{dR}}^+$, since $\mathbf{B}_{\mathrm{dR}}^+/t\mathbf{B}_{\mathrm{dR}}^+ = \mathbf{C}_p$. This way, we see that $\overline{\mathbf{Q}}_p \subset \mathbf{B}_{\mathrm{dR}}^+$. A theorem of Colmez shows that actually, $\overline{\mathbf{Q}}_p$ is dense in $\mathbf{B}_{\mathrm{dR}}^+$ for its Fréchet topology.

Proposition 11.2. — We have $\mathbf{B}_{dR}^{G_K} = K$.

To prove this, we write the exact sequence $0 \to t^{h+1}\mathbf{B}_{dR}^+ \to t^h\mathbf{B}_{dR}^+ \to \mathbf{C}_p(h) \to 0$, and use the computation of $H^0(K, \mathbf{C}_p(h))$ carried out in §8.

12. De Rham representations

We now carry out the constructions of §4, with $B = \mathbf{B}_{dR}$. If V is a p-adic representation of G_K , then we set $D_{dR}(V) = (\mathbf{B}_{dR} \otimes_{\mathbf{Q}_p} V)^{G_K}$, which is a filtered K-vector space (if Vis E-linear, then $D_{dR}(V)$ is a $E \otimes_{\mathbf{Q}_p} K$ -module). We say that V is de Rham if it is \mathbf{B}_{dR} admissible. Note that since $\overline{\mathbf{Q}}_p \subset \mathbf{B}_{dR}$, theorem 5.2 implies that potentially de Rham representation are de Rham. If V is de Rham, then a Hodge-Tate weight of V is an integer h, such that $\operatorname{Fil}^{-h}D_{dR}(V) \neq \operatorname{Fil}^{-h+1}D_{dR}(V)$.

The functor D_{dR} : {de Rham representations} \rightarrow {filtered K-vector spaces} "forgets" a lot of information about V. For instance, if V is potentially unramified, then it is de Rham, but then $D_{dR}(V)$ is the filtered vector space for which $\operatorname{Fil}^0 D_{dR}(V) = D_{dR}(V)$ and $\operatorname{Fil}^1 D_{dR}(V) = \{0\}$.

The following theorem of Faltings proves a conjecture of Fontaine, and shows that representations of G_K "coming from geometry" are de Rham.

Theorem 12.1. — If X is proper and smooth over K, and if $V = H^i_{et}(X_{\overline{\mathbf{Q}}_p}, \mathbf{Q}_p)$, then V is a de Rham representation of G_K , and $D_{dR}(V) = H^i_{dR}(X/K)$.

Conversely, we have the following conjecture of Fontaine and Mazur. If F is a number field, then we say that a representation of G_F comes from geometry if it is a subquotient of the étale cohomology of some algebraic variety over F.

Conjecture 12.2. — If F is a number field, and if V is an irreducible p-adic representation of G_F , which is unramified at almost every place of F, and which is de Rham at every place of F above p, then V comes from geometry.

If in addition $\dim(V) = 2$ and $F = \mathbf{Q}$, then we actually expect V to come from a modular form; this has been proved in most cases by Emerton and Kisin.

13. The rings B_{max} and B_{st}

Recall than in §10, we constructed the ring $\widetilde{\mathbf{B}}^+ = \{\sum_{k\gg-\infty} p^k[x_k], \text{ where } x_k \in \widetilde{\mathbf{E}}^+\}$. If $r \ge 0$, then we define a valuation $V(\cdot, r)$ on $\widetilde{\mathbf{B}}^+$ by the formula

$$V(x,r) = \inf_{k} \operatorname{val}_{\mathbf{E}}(x_k) + k \frac{pr}{p-1},$$

and we define $\widetilde{\mathbf{B}}_{[0;r]}$ to be the completion of $\widetilde{\mathbf{B}}^+$ for $V(\cdot, r)$ (note that more generally, one can define some rings $\widetilde{\mathbf{B}}_{[r;s]}$, which explains the heavy notation). If $s \ge r$, then we have an injective map $\widetilde{\mathbf{B}}_{[0;s]} \to \widetilde{\mathbf{B}}_{[0;r]}$. The ring \mathbf{B}_{\max}^+ is $\widetilde{\mathbf{B}}_{[0;r_0]}$, where $r_0 = (p-1)/p$. It contains $\widetilde{\mathbf{B}}^+$ (and hence $\widehat{\mathbf{Q}}_p^{\text{unr}}$), but also the element t defined in §11 (which belongs to $\widetilde{\mathbf{B}}_{[0;r]}$ for all r > 0), and we set $\mathbf{B}_{\max} = \mathbf{B}_{\max}^+[1/t]$. The Frobenius map $\varphi : \widetilde{\mathbf{B}}^+ \to \widetilde{\mathbf{B}}^+$ gives rise to a bijection $\varphi : \widetilde{\mathbf{B}}_{[0;r_0]} \to \widetilde{\mathbf{B}}_{[0;pr_0]}$, and hence to an injective map $\varphi : \mathbf{B}_{\max}^+ \to \mathbf{B}_{\max}^+$. We use the ring \mathbf{B}_{\max} instead of Fontaine's \mathbf{B}_{cris} for technical reasons, but they are almost equal; for example, $\varphi(\mathbf{B}_{\max}) \subset \mathbf{B}_{cris} \subset \mathbf{B}_{\max}$.

The map $\widetilde{\mathbf{B}}^+ \to \mathbf{B}_h$ is continuous for the valuation $V(\cdot, r_0)$ on $\widetilde{\mathbf{B}}^+$ and therefore extends to a continuous map $\mathbf{B}_{\max}^+ \to \mathbf{B}_{dR}^+$. Recall that if K is a finite extension of \mathbf{Q}_p , then $K \subset \mathbf{B}_{dR}^+$. Let $K_0 = K \cap \mathbf{Q}_p^{\text{unr}}$ be the maximal unramified extension of \mathbf{Q}_p contained in K, so that $K_0 \subset \mathbf{B}_{\max}^+$.

Theorem 13.1. — The natural map $K \otimes_{K_0} \mathbf{B}^+_{\max} \to \mathbf{B}^+_{dR}$ is injective.

One can easily prove that the map $K \otimes_{K_0} \widetilde{\mathbf{B}}^+ \to \mathbf{B}_{dR}^+$ is injective, and in order to prove the theorem, one needs to show that the map remains injective after completing the left hand side, which is rather delicate.

As a corollary, we get that $K \otimes_{K_0} \mathbf{B}_{\max} \to \mathbf{B}_{dR}$ is also injective, and using the fact that $\mathbf{B}_{dR}^{G_K} = K$, we get that $\operatorname{Frac}(\mathbf{B}_{\max})^{G_K} = K_0$.

Let u be a variable, and let $\mathbf{B}_{st}^+ = \mathbf{B}_{\max}^+[u]$ and $\mathbf{B}_{st} = \mathbf{B}_{\max}[u]$. We extend the action of $G_{\mathbf{Q}_p}$ from \mathbf{B}_{\max} to \mathbf{B}_{st} by g(u) = u + a(g)t, where a(g) is defined by $g(p^{1/p^n}) = \zeta_{p^n}^{a(g)} p^{1/p^n}$. We also extend φ by $\varphi(u) = pu$, and we define a monodromy map $N : \mathbf{B}_{st} \to \mathbf{B}_{st}$ by N = -d/du, so that $N\varphi = p\varphi N$.

The series $\log([\tilde{p}]/p) = \log(1 + ([\tilde{p}]/p - 1))$ converges in \mathbf{B}_{dR}^+ , and if we choose $\log(p)$ (usually, we choose $\log(p) = 0$), then we can talk about $\log([\tilde{p}]) \in \mathbf{B}_{dR}^+$. We then extend the map $\mathbf{B}_{max}^+ \to \mathbf{B}_{dR}^+$ to \mathbf{B}_{st}^+ , by sending u to $\log([\tilde{p}])$, which is a $G_{\mathbf{Q}_p}$ -equivariant map.

Theorem 13.2. — The natural map $K \otimes_{K_0} \mathbf{B}_{st}^+ \to \mathbf{B}_{dR}^+$ is injective.

This implies that $K \otimes_{K_0} \mathbf{B}_{st} \to \mathbf{B}_{dR}$ is injective, and that $\operatorname{Frac}(\mathbf{B}_{st})^{G_K} = K_0$. Finally, we have the following result (condition (2) of the definition of a ring of periods in §4).

Theorem 13.3. — If $y \in \mathbf{B}_{st}$ and if $\mathbf{Q}_p \cdot y$ is stable by G_K , then $y = y_0 t^h$ with $y_0 \in \widehat{\mathbf{Q}}_p^{unr}$ and $h \in \mathbf{Z}$.

In particular, such a y actually belongs to \mathbf{B}_{\max} , and is invertible in \mathbf{B}_{\max} .

14. Crystalline and semi-stable representations

We now carry out the constructions of §4, with $B = \mathbf{B}_{\max}$ or \mathbf{B}_{st} . If V is a p-adic representation of G_K , then we set $\mathbf{D}_{cris}(V) = (\mathbf{B}_{\max} \otimes_{\mathbf{Q}_p} V)^{G_K}$ and $\mathbf{D}_{st}(V) = (\mathbf{B}_{st} \otimes_{\mathbf{Q}_p} V)^{G_K}$. They are both K_0 -vector spaces, $\mathbf{D}_{st}(V)$ is a (φ, N) -module and $\mathbf{D}_{cris}(V) = \mathbf{D}_{st}(V)^{N=0}$ is a φ -module. We say that V is crystalline or semistable if V is \mathbf{B}_{\max} -admissible or \mathbf{B}_{st} -admissible respectively. Theorem 13.2 implies that $K \otimes_{K_0} \mathbf{D}_{st}(V)$ injects into $\mathbf{D}_{dR}(V)$, so

that if V is semistable, then it is also de Rham. The space $D_{st}(V)$ is then a filtered (φ, N) module over K, that is a K_0 -vector space D, with an invertible semilinear endomorphism φ , an endomorphism N such that $N\varphi = p\varphi N$, and a filtration on $D_K = K \otimes_{K_0} D$. In the
next section, we'll see how technical properties of \mathbf{B}_{max} and \mathbf{B}_{st} translate into properties
of $D_{cris}(\cdot)$ and $D_{st}(\cdot)$.

The property of being "crystalline" or "semistable" is the analogue of having "good reduction" or being "semistable" for $\ell \neq p$ as in §3. For example, we have the following result (due to Iovita for "crystalline" and to Breuil for "semistable"), which is a *p*-adic analogue of the Néron-Ogg-Shafarevich criterion for $\ell \neq p$.

Theorem 14.1. — If A is an abelian variety over K, then V_pA is crystalline if and only if A has good reduction, and V_pA is semistable if and only if A has semistable reduction.

We say that V is potentially semistable if there exists some finite Galois extension L of K, such that $V|_{G_L}$ is semistable. In this case, $D_{st}(V|_{G_L})$ is a filtered (φ , N, Gal(L/K))-module over L. Potentially semistable representations are de Rham, and we have the following result, which may be seen as a p-adic analogue of theorem 3.1.

Theorem 14.2. — Every de Rham representation is potentially semistable.

Just as in §3, we can attach a Weil-Deligne representation WD(V) to a potentially semistable representation V of G_K . If $D = D_{st}(V|_{G_L})$, then D is the space of this representation, and $N_{WD} = N$ and $\rho_{WD}(w) = w\varphi^{-hn(w)}$ if $w \in W_K$, where W_K acts on D through $\operatorname{Gal}(L/K)$, and $q = p^h = \operatorname{Card}(k_K)$. The fact that $N\varphi = p\varphi N$ implies that $N_{WD}\rho_{WD}(w) = q^{-n(w)}\rho_{WD}(w)N_{WD}$. Contrary to the case $\ell \neq p$, this Weil-Deligne representation is not enough to recover V, since it does not take into account the filtration.

If f is a modular eigenform, then one can attach to it a p-adic representation $V_p f$, as well as a smooth admissible representation $\Pi_p f$ of $\operatorname{GL}_2(\mathbf{Q}_p)$, and we then have the following result of Saito.

Theorem 14.3. — If f is a modular eigenform, then $V_p f$ is potentially semistable, and $WD(V_p f)$ is the Weil-Deligne representation attached to $\Pi_p f$ by the local Langlands correspondence.

If in addition $p \nmid N$, then $V_p f$ is crystalline, and the above theorem completely determines $D_{cris}(V_p f)$, because there is only one choice for the filtration (in this case, theorem 14.3 was previously proved by Scholl). We get $D_{cris}(V_p f)^* = D_{k,a_p}$ where k = k(f) and $a_p = a_p(f)$, and $D_{k,a_p} = Ee_1 \oplus Ee_2$ with

$$\operatorname{Mat}(\varphi) = \begin{pmatrix} 0 & -1 \\ p^{k-1} & a_p \end{pmatrix} \text{ and } \operatorname{Fil}^i D_{k,a_p} = \begin{cases} D_{k,a_p} & \text{if } i \leq 0, \\ Ee_1 & \text{if } 1 \leq i \leq k-1, \\ \{0\} & \text{if } i \geq k. \end{cases}$$

15. Admissible filtered (φ , N)-modules

By the constructions of the previous section, we have a functor $D_{st}(\cdot)$, from the category of semistable representations of G_K to the category of filtered (φ , N)-modules over K. In this section, we explain how technical properties of the ring \mathbf{B}_{st} can be used to prove some properties of the functor $D_{st}(\cdot)$. In particular, we will see that it is fully faithful, and give a characterization of its image.

Theorem 15.1. — We have $\mathbf{B}_{\max}^{\varphi=1} \cap \mathbf{B}_{dR}^+ = \mathbf{Q}_p$.

As a corollary, we see that one can recover \mathbf{Q}_p from the filtered (φ, N) -module structure of \mathbf{B}_{st} , since we have $\mathbf{Q}_p = \mathbf{B}_{st}^{N=0,\varphi=1} \cap \operatorname{Fil}^0 \mathbf{B}_{dR}$. This way, we get the following full faithfulness result.

Corollary 15.2. — The functor $V \mapsto D_{st}(V)$ is fully faithful.

Indeed, if V is semistable, then $\mathbf{B}_{\mathrm{st}} \otimes_{K_0} \mathcal{D}_{\mathrm{st}}(V) = \mathbf{B}_{\mathrm{st}} \otimes_{\mathbf{Q}_p} V$, so that

$$V = (\mathbf{B}_{\mathrm{st}} \otimes_{K_0} \mathcal{D}_{\mathrm{st}}(V))^{N=0,\varphi=1} \cap \mathrm{Fil}^0(\mathbf{B}_{\mathrm{dR}} \otimes_K \mathcal{D}_{\mathrm{dR}}(V))$$

Let us now characterize the image of $D_{st}(\cdot)$. If D is a 1-dimensional filtered (φ, N) module over K, we define $t_N(D)$ to be $\operatorname{val}_p(\operatorname{Mat}(\varphi))$ and $t_H(D)$ to be the integer h such that $\operatorname{Fil}^h D_K = D_K$ and $\operatorname{Fil}^{h+1} D_K = \{0\}$. If D is of arbitrary dimension, then we let $t_N(D) = t_N(\det D)$ and $t_H(D) = t_H(\det D)$.

If V is a semistable representation, then det $D_{st}(V) = D_{st}(\det V)$, and in the notation of theorem 13.3, we have $t_N(D_{st}(V)) = t_H(D_{st}(V)) = h$.

If D is a 1-dimensional subobject of $D_{st}(V)$, and $y \in D$, then $\varphi(y) = \lambda y$ for some $\lambda \in K_0$ of valuation $t_N(D)$, and $y \in \operatorname{Fil}^h D_K$ for $h = t_H(D)$. As a corollary of theorem 15.1, we get that if $h \ge \operatorname{val}_p(\lambda) + 1$, then $\mathbf{B}_{\max}^{\varphi=\lambda} \cap t^h \mathbf{B}_{dR}^+ = \{0\}$. This implies that $t_H(D) \le t_N(D)$. If D is a subobject of $D_{st}(V)$ of dimension r, then det D is a 1-dimensional subobject of $D_{st}(\Lambda^r V)$, and we can apply the above reasoning to get again $t_H(D) \le t_N(D)$.

We say that a filtered (φ, N) -module D over K is admissible if $t_H(D) = t_N(D)$ and if $t_H(D') \leq t_N(D')$ for every subobject D' of D.

Proposition 15.3. — If V is a semistable representation, then $D_{st}(V)$ is an admissible filtered (φ, N) -module over K.

Fontaine had conjectured that conversely, every admissible filtered (φ , N)-module over K is the D_{st} of some semistable representation V of G_K , and this is now a theorem of Colmez and Fontaine.

Theorem 15.4. — The functor $D_{st}(\cdot)$ gives rise to an equivalence of categories, between the category of semistable representations of G_K and the category of admissible filtered (φ, N) -modules over K.

Thus in principle, one can answer any question about a semistable representation, merely by looking at the attached filtered (φ , N)-module. In practice, this can be quite hard. For example, computing the reduction modulo p of the crystalline representation attached to the filtered φ -module D_{k,a_p} given at the end of §14 is (as of January 2013) an open problem.

16. The groups $H^1_*(K, V)$

If V is a p-adic representation of G_K , then $H^1(K, V)$ classifies extensions E of \mathbf{Q}_p by V, that is representations E inside the exact sequence: $0 \to V \to E \to \mathbf{Q}_p \to 0$. More generally, extensions of Y by X are classified by $H^1(K, X \otimes Y^*)$. Given some property of representations, we are interested in the subset of $H^1(K, V)$ corresponding to extensions having that property. In particular, we denote by $H^1_f(K, V)$ or $H^1_{st}(K, V)$ or $H^1_g(K, V)$ the classes of extensions which are crystalline or semistable or de Rham, respectively. If V is crystalline, then $H^1_f(K, V) = \ker(H^1(K, V) \to H^1(K, \mathbf{B}_{\max} \otimes_{\mathbf{Q}_p} V))$, and we have similar statements for H^1_{st} and H^1_g . The following result is an easy consequence of theorem 14.2, but had been proved before by Hyodo and was then seen as evidence for theorem 14.2.

Theorem 16.1. — If V is semistable, then $H^{1}_{st}(K, V) = H^{1}_{a}(K, V)$.

We also define $H^1_e(K, V) = \ker(H^1(K, V) \to H^1(K, \mathbf{B}_{\max}^{\varphi=1} \otimes_{\mathbf{Q}_p} V))$. Recall that by theorem 5.1, there is a perfect pairing $H^1(K, V) \times H^1(K, V^*(1)) \to \mathbf{Q}_p$. The following theorem of Bloch and Kato computes the orthogonals of the H^1_* .

Theorem 16.2. — If V is a crystalline representation, then

$$H^1_f(K,V)^{\perp} = H^1_f(K,V^*(1)) \text{ and } H^1_e(K,V)^{\perp} = H^1_g(K,V^*(1)).$$

One can compute the dimensions of the $H^1_*(K, V)$, by using the so-called fundamental exact sequence $0 \to \mathbf{Q}_p \to \mathbf{B}_{\max}^{\varphi=1} \to \mathbf{B}_{dR}/\mathbf{B}_{dR}^+ \to 0$, which when used along with the fact that $1 - \varphi : \mathbf{B}_{\max} \to \mathbf{B}_{\max}$ is surjective, gives rise to

$$0 \to \mathbf{Q}_p \to \mathbf{B}_{\max} \xrightarrow{x \mapsto ((1-\varphi)x,\overline{x})} \mathbf{B}_{\max} \oplus \mathbf{B}_{\mathrm{dR}} / \mathbf{B}_{\mathrm{dR}}^+ \to 0.$$

$$0 \to V^{G_K} \to \mathcal{D}_{\mathrm{cris}}(V) \to \mathcal{D}_{\mathrm{cris}}(V) \oplus \mathcal{D}_{\mathrm{dR}}(V) / \mathrm{Fil}^0 \mathcal{D}_{\mathrm{dR}}(V) \to H^1_f(K, V) \to 0,$$

where we use the fact that $(\mathbf{B}_{\mathrm{dR}}/\mathbf{B}_{\mathrm{dR}}^+ \otimes_{\mathbf{Q}_p} V)^{G_K} = \mathrm{D}_{\mathrm{dR}}(V)/\mathrm{Fil}^0\mathrm{D}_{\mathrm{dR}}(V)$, if V is de Rham. This tells us that (if we write h_*^1 for $\dim_{\mathbf{Q}_p} H_*^1$)

$$h_f^1(K,V) = [K: \mathbf{Q}_p](\dim_{\mathbf{Q}_p} V - \dim_K \operatorname{Fil}^0 \mathcal{D}_{\mathrm{dR}}(V)) + \dim_{\mathbf{Q}_p} V^{G_K}.$$

Likewise, we can prove that

$$h_{e}^{1}(K, V) = h_{f}^{1}(K, V) - \dim_{\mathbf{Q}_{p}} \mathcal{D}_{\mathrm{cris}}(V)^{\varphi=1},$$

$$h_{g}^{1}(K, V) = h_{f}^{1}(K, V) + \dim_{\mathbf{Q}_{p}} \mathcal{D}_{\mathrm{cris}}(V^{*}(1))^{\varphi=1}.$$

For example, let $V = \mathbf{Q}_p(r)$ and $d = [K : \mathbf{Q}_p]$. By using the above formulas, we find the following dimensions for the various $H^1_*(K, \mathbf{Q}_p(r))$.

r	≤ -1	0	1	$\geqslant 2$
$h^1(K, \mathbf{Q}_p(r))$	d	d+1	d+1	d
* = e	0	0	d	d
* = f	0	1	d	d
* = g	0	1	d+1	d

Let us make a few comments about this table.

- 1. For $r \ge 2$, we see that every extension of \mathbf{Q}_p by $\mathbf{Q}_p(r)$ is crystalline.
- 2. For r = 1, they are all semi-stable, and we saw in §5 that the Kummer map δ : $\mathbf{Q}_p \otimes_{\mathbf{Z}_p} \widehat{K^{\times}} \to H^1(K, \mathbf{Q}_p(1))$ is an isomorphism. The subset $H^1_f(K, \mathbf{Q}_p(1))$ then corresponds to the image of $\mathbf{Q}_p \otimes_{\mathbf{Z}_p} \widehat{\mathcal{O}_K^{\times}}$, which is the characteristic zero analogue of "peu ramifiées" extensions.
- 3. For r = 0, the h^1 counts the number of independent \mathbf{Z}_p -extensions of K, and $H_f^1(K, \mathbf{Q}_p)$ corresponds to the unramified one.
- 4. For $r \leq -1$, one can (easily) show that all extensions are $\mathbf{C}_p((t))$ -admissible, but since no nontrivial ones are \mathbf{B}_{dR} -admissible, \mathbf{B}_{dR} is not isomorphic to $\mathbf{C}_p((t))$.

If V is de Rham, and we tensor the exact sequence $0 \to \mathbf{Q}_p \to \mathbf{B}_{\max}^{\varphi=1} \to \mathbf{B}_{dR}/\mathbf{B}_{dR}^+ \to 0$ by V, and take G_K -invariants, then we find a connecting map: $\mathbf{D}_{dR}(V)/\mathrm{Fil}^0\mathbf{D}_{dR}(V) \to H_e^1(K, V)$, which is denoted by \exp_V , and called Bloch-Kato's exponential. If A is an abelian variety (or a formal group), then V_pA is de Rham, $\mathbf{D}_{dR}(V_pA)/\mathrm{Fil}^0\mathbf{D}_{dR}(V_pA)$ is identified with the Lie Algebra of A, and if δ_A denotes the Kummer map, then the

following diagram commutes, which helps to explain the terminology.

It also shows that the image of the Kummer map always lies in the H_e^1 .

17. A *p*-adic period pairing

Let K be a finite unramified extension of \mathbf{Q}_p , and let G be a 1-dimensional formal group of height h over \mathcal{O}_K , whose addition law is given by $X \oplus Y \in \mathcal{O}_K[\![X,Y]\!]$. We denote by [n](X) the "multiplication by n" power series. The Tate module of G is $T_pG = \{(u_0, u_1, \ldots), \text{ where } u_i \in \mathfrak{m}_{\mathbf{C}_p} \text{ and } u_0 = 0 \text{ and } [p](u_{i+1}) = u_i\}$. The space $V_pG = \mathbf{Q}_p \otimes_{\mathbf{Z}_p} T_pG$ is a p-adic representation of G_K of dimension h, which we know is crystalline. We will see here a more precise version of this result.

A differential form on G is $\omega(X) = \alpha(X)dX$, where $\alpha(X) \in K[X]$, and we denote by $F_{\omega}(X)$ the unique power series such that $dF_{\omega}(X) = \omega(X)$ and $F_{\omega}(0) = 0$. We say that

- 1. ω is invariant, if $F_{\omega}(X \oplus Y) = F_{\omega}(X) + F_{\omega}(Y)$;
- 2. ω is exact, if $F_{\omega}(X) \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!];$
- 3. ω is of the second kind, if $F_{\omega}(X \oplus Y) F_{\omega}(X) F_{\omega}(Y) \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X,Y]\!]$.

The first de Rham cohomology group of G is then given by $H_{dR}^1(G/K) = \{\text{second kind}\}/\{\text{exact}\}$. This is a K-vector space of dimension h, equipped with the filtration $\operatorname{Fil}^0 H_{dR}^1 = H_{dR}^1$ and $\operatorname{Fil}^1 H_{dR}^1 = \{\text{invariant}\}$ and $\operatorname{Fil}^2 H_{dR}^1 = \{0\}$.

Theorem 17.1. — If ω is of the second kind, if $u \in T_pG$, and if $\hat{u}_n \in \widetilde{\mathbf{A}}^+$ is such that $\theta(\hat{u}_n) = u_n$ for every $n \ge 0$, then

- 1. the sequence $\{p^n F_{\omega}(\widehat{u}_n)\}_{n\geq 0}$ converges in \mathbf{B}^+_{\max} , to an element $\int_{u} \omega$;
- 2. this element only depends on u and on the class of ω ;
- 3. the resulting map $H^1_{dR}(G/K) \times V_p G \to \mathbf{B}^+_{\max}$ is a perfect pairing, compatible with the action of G_K and the filtrations.

For example, if $G = \mathbf{G}_m$ and $\omega(X) = dX/(1+X)$ and $u = (0, \zeta_p - 1, ...)$, then one can take $\hat{u}_n = [\varepsilon^{1/p^n}] - 1$ for $n \ge 0$, and then $\int_u \omega = t$.

As a consequence of theorem 17.1, we recover the fact that V_pG is crystalline, and that $D_{cris}(V_pG) = H^1_{dR}(G/K)^*$, using the *p*-adic period pairing. This construction can be extended to the case of abelian varieties.

References

- [Ber04] L. BERGER "An introduction to the theory of p-adic representations", Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, p. 255–292.
- [BK90] S. BLOCH and K. KATO "L-functions and Tamagawa numbers of motives", The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, p. 333–400.
- [Col92] P. COLMEZ "Périodes p-adiques des variétés abéliennes", Math. Ann. 292 (1992), no. 4, p. 629–644.
- [FM95] J.-M. FONTAINE and B. MAZUR "Geometric Galois representations", Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, p. 41–78.
- [Fon94a] J.-M. FONTAINE "Le corps des périodes p-adiques", Astérisque (1994), no. 223, p. 59–111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).
- [Fon94b] J.-M. FONTAINE "Représentations *l*-adiques potentiellement semi-stables", Astérisque (1994), no. 223, p. 321–347, Périodes *p*-adiques (Bures-sur-Yvette, 1988).
- [Fon94c] J.-M. FONTAINE "Représentations p-adiques semi-stables", Astérisque (1994), no. 223, p. 113–184, Périodes p-adiques (Bures-sur-Yvette, 1988).
- [Ser68] J.-P. SERRE *Corps locaux*, Hermann, Paris, 1968, Deuxième édition, Publications de l'Université de Nancago, No. VIII.
- [Tat67] J. TATE "p-divisible groups", Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158–183.
- [Was97] L. WASHINGTON "Galois cohomology", Modular forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997, p. 101–120.

LAURENT BERGER, UMPA ENS de Lyon, UMR 5669 du CNRS, IUF E-mail : laurent.berger@ens-lyon.fr • Url : perso.ens-lyon.fr/laurent.berger/